Proofs, Upside Down - A Functional Correspondence between Natural Deduction and the Sequent Calculus
نویسنده
چکیده
It is well known in proof theory that sequent-calculus proofs differ from natural deduction proofs by “reversing” elimination rules upside down into left introduction rules. It is also well known that to each recursive, functional program corresponds an equivalent iterative, accumulator-passing program, where the accumulator stores the continuation of the iteration, in “reversed” order. Here, we compose these remarks and show that a restriction of the intuitionistic sequent calculus, LJT, is exactly an accumulator-passing version of intuitionistic natural deduction NJ. More precisely, we obtain this correspondence by applying a series of off-the-shelf program transformations à la Danvy et al. on a type checker for the bidirectional λ-calculus, and get a type checker for the λ̄-calculus, the proof term assignment of LJT. This functional correspondence revisits the relationship between natural deduction and the sequent calculus by systematically deriving the rules of the latter from the former, and allows us to derive new sequent calculus rules from the introduction and elimination rules of new logical connectives.
منابع مشابه
Revisiting the Correspondence between Cut Elimination and Normalisation
Cut-free proofs in Herbelin’s sequent calculus are in 1-1 correspondence with normal natural deduction proofs. For this reason Herbelin’s sequent calculus has been considered a privileged middle-point between L-systems and natural deduction. However, this bijection does not extend to proofs containing cuts and Herbelin observed that his cutelimination procedure is not isomorphic to β-reduction....
متن کاملA Logic Program for Transforming Sequent Proofs to Natural Deduction Proofs
In this paper, we show that an intuitionistic logic with second-order function quantiication, called hh 2 here, can serve as a metalanguage to directly and naturally specify both sequent calculi and natural deduction inference systems for rst-order logic. For the intuitionistic subset of rst-order logic, we present a set of hh 2 formulas which simultaneously speciies both kinds of inference sys...
متن کاملCanonical Sequent Proofs via Multi-Focusing
The sequent calculus admits many proofs of the same conclusion that differ only by trivial permutations of inference rules. In order to eliminate this “bureaucracy” from sequent proofs, deductive formalisms such as proof nets or natural deduction are usually used instead of the sequent calculus, for they identify proofs more abstractly and geometrically. In this paper we recover permutative can...
متن کاملOn a Local-Step Cut-Elimination Procedure for the Intuitionistic Sequent Calculus
In this paper we investigate, for intuitionistic implicational logic, the relationship between normalization in natural deduction and cut-elimination in a standard sequent calculus. First we identify a subset of proofs in the sequent calculus that correspond to proofs in natural deduction. Then we define a reduction relation on those proofs that exactly corresponds to normalization in natural d...
متن کاملCut-Elimination and a Permutation-Free Sequent Calculus for Intuitionistic Logic
We describe a sequent calculus, based on work of Herbelin, of which the cut-free derivations are in 1-1 correspondence with the normal natural deduction proofs of intuitionistic logic. We present a simple proof of Herbelin’s strong cutelimination theorem for the calculus, using the recursive path ordering theorem of Dershowitz.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013